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Dirac Quantization in Kantowski–Sachs Spacetime
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By forming the square root of the Wheeler–DeWitt equation and applying it
to a minisuperspace composed of a Kantowski–Sachs universe, we derive a
cosmological wave function with conserved current and positive-definite
probability density.

1. INTRODUCTION

Since Hartle and Hawking (1983) and Vilenkin (1982, 1988) explored
the birth of the universe in the frame of quantum gravitation, quantum cosmol-
ogy has gone through three main phases: (1) quantum theory of a single
universe (Halliwell, 1988), (2) wormhole mechanism and topological varia-
tion of space (Coleman, 1988; Klebanov et al., 1989), and (3) quantum theory
of multiple universes, third quantization, i.e., universal quantum field theory
(Giddings and Strominger, 1989; Hosoya and Morikawa, 1989; Duncan, 1990;
Peley, 1991; Garay, 1993; Shen, 1995). Clearly, investigating the properties of
the universe during this period (about 10243 s) is very important for a complete
understanding of the universe.

The universal wave function in the model of a closed Friedmann universe
with scalar field is given by Hartle and Hawking (1983) through a Wheeler–
DeWitt equation. However, the Wheeler–DeWitt equation is a hyperbolic
equation, so the universal wave function obtained in this method is ambiguous
in the same physical sense as the Klein–Gordon equation in quantum
mechanics.
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In order to handle the crucial difficulty in the density interpretation of
the wave function in quantum cosmology, D’Eath et al. (1993) investigated
in detail a supersymmetric Bianchi model employing the root square of the
Wheeler–DeWitt equation. By means of this method, the Friedmann universe
with charged electric scalar field was studied by Malle (1995). This work
has shown that the probability interpretation is reliable.

In this paper we apply the square root of Wheeler–DeWitt equation to
a minisuperspace composed of a Kantowski–Sachs universe, and deduce a
wave function with conserved current and positive-definite probability
density.

2. DIRAC QUANTIZATION

The metric in a Kantowski–Sachs universe (Kantowski and Sachs,
1966) reads

ds2 5
G
2p

[2N 2(t)dt2 1 a2 (t)dr 2 1 b2(t) dV2
2] (1)

where G is the Newton constant and N(t) is the lapse function; the coordinate
r is taken to be periodic with a period of 2p. Here dV2

2 is the unit S 2 sphere,
and the topological structure of this metric is R1 ^ S1 ^ S2.

We shall consider an Einstein action of coupled real scalar field F 5
w/!4pG,

S 5 # dt
N
2 F2

1
N 2 (aḃ2 1 2bȧḃ) 2 a 1

ab2

N 2 ẇ2G (2)

Setting

c 5 ab (3)

and substituting Eq. (3) into Eq. (2), we have

S 5 # dt F2
ċ2

2Na
1

c2ȧ2

2Na3 2
Na
2

1
c2

2Na
ẇ2G (4)

Equation (4) yields the Hamiltonian of the system

H 5
Na
2c2 (a2P2

a 2 c2P2
c 1 c2 1 P2

w) (5)

Taking a classical constraint and operator transformation, we obtain the
Wheeler–DeWitt equation in the form
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1 ­2

­x2 2
­2

­y2 2
­2

­w2 1 e2x2C(x, y, w) 5 0 (6)

where x 5 ln c, y 5 ln a, and we make the simplest choice of factor-ordering
ambiguity p 5 1 (Hosoya and Morikawa, 1989).

We form the square root of the Wheeler–DeWitt equation (D’Eath et
al., 1993; Malle, 1995) because the wave equation in minisuperspace (x, y,
w) is required to be linear. Assuming x to be ‘time’ variable and y, w to be
‘space’ variables, we introduce the wave equation of the form

i
­C
­V

5 2i1sy
­C
­y

1 sw
­C
­w2 2 iW(x)C (7)

where W(x) is real function of x and

sy 5 F 0 i
2i 0G (8)

sw 5 F0 1
1 0G (9)

C 5 FC1

C2
G (10)

Substituting Eqs. (8)–(10) into wave equation (7), we obtain the matrix
equation

3i
­C1

­x

i
­C2

­x
4 5 3

­C2

­y
1

1
i

­C2

­w
1

1
i

W(x)C1

2
­C1

­y
1

1
i

­C1

­w
1

1
i

W(x)C24 (11)

where Ca (a 5 1, 2) must satisfy the Wheeler–DeWitt equation (6),

­2Ca

­x2 5
­2Ca

­y2 1
­2Ca

­w2 2 2e2x Ca (12)

From Eq. (11), Eq. (12) can reduces to

­2Ca

­x2 5
­2Ca

­y2 1
­2Ca

­w2 2 2W
­Ca

­x
2 W 2Ca 2

­W
­x

Ca (13)

Taking into account Eqs. (12) and (13), we can constrain W(x) by the follow-
ing equation:
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dW
dx

1 2fW 1 W 2 5 2e2x (14)

where

f 5
­ ln Ca

­C
(15)

Equation (14) takes the form of a Riccati equation. By means of Eq. (11),
the conserved current corresponding to Eq. (7) can be expressed as

i
­C
­x

5 Hs C (16)

Taking the complex conjugate to Eq. (16), we easily get

2i
­C̃*
­x

5 (H̃s C)* (17)

By combining Eq. (16) with (17), we find

iC̃*
­C
­x

1 i
­C̃*
­x

C 5 C̃*HsC 2 (H̃sC)*C (18)

Equation (18) can be rewritten as

­r
­x

1
­jy

­y
1

­jw
­w

5 0 (19)

where r, jy , and jw are respectively given by

r 5 k exp1# W dx2C̃*C (20)

jy 5 k exp1# W dx2C̃*syC (21)

jw 5 k exp1# W dx2C̃*swC (22)

and k is a positive real constant.
Therefore, Eqs. (19)–(22) reveal that the wave equation for two-compo-

nent cosmological wave function satisfies the conserved current with positive-
definite density r, where the potential is a definite factor.

The analyses above suggest that, by exploiting the square root of the
Wheeler–DeWitt equation, the positive-definite probability density and con-
served current required in quantum mechanics can be satisfied.
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